Tetrahedra on Deformed and Integral Group Cohomology

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tetrahedra on deformed spheres and integral group cohomology

We show that for every injective continuous map f : S → R there are four distinct points in the image of f such that the convex hull is a tetrahedron with the property that two opposite edges have the same length and the other four edges are also of equal length. This result represents a partial result for the topological Borsuk problem for R. Our proof of the geometrical claim, via Fadell– Hus...

متن کامل

Enumeration of Integral Tetrahedra

We determine the numbers of integral tetrahedra with diameter d up to isomorphism for all d ≤ 1000 via computer enumeration. Therefore we give an algorithm that enumerates the integral tetrahedra with diameter at most d in O(d5) time and an algorithm that can check the canonicity of a given integral tetrahedron with at most 6 integer comparisons. For the number of isomorphism classes of integra...

متن کامل

Q-deformed Path Integral

Using differential and integral calculi on the quantum plane which are invariant with respect to quantum inhomogeneous Euclidean group E(2) q , we construct path integral representation for the quantum mechanical evolution operator kernel of q-oscillator.

متن کامل

The Integral Cohomology of the Group of Loops

Let Ln be a collection of n unknotted, unlinked circles in 3–space, and let PΣn be the group of motions of Ln where each circle ends up back at its original position. This group was introduced in the PhD thesis of David Dahm, a student of Ralph Fox, and was later studied by various authors, notably Deborah Goldsmith. Alan Brownstein and Ronnie Lee succeeded in computing H(PΣn,Z) in [6], and at ...

متن کامل

Module cohomology group of inverse semigroup algebras

Let $S$ be an inverse semigroup and let $E$ be its subsemigroup of idempotents. In this paper we define the $n$-th module cohomology group of Banach algebras and show that the first module cohomology group $HH^1_{ell^1(E)}(ell^1(S),ell^1(S)^{(n)})$ is zero, for every odd $ninmathbb{N}$. Next, for a Clifford semigroup $S$ we show that $HH^2_{ell^1(E)}(ell^1(S),ell^1(S)^{(n)})$ is a Banach sp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Electronic Journal of Combinatorics

سال: 2009

ISSN: 1077-8926

DOI: 10.37236/82